Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Pharmacol ; 180 Suppl 2: S374-S469, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-38123156

RESUMO

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and over 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org/), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16182. Transporters are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, ion channels, nuclear hormone receptors, catalytic receptors and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Assuntos
Bases de Dados de Produtos Farmacêuticos , Farmacologia , Humanos , Ligantes , Canais Iônicos/química , Receptores Acoplados a Proteínas G , Receptores Citoplasmáticos e Nucleares
2.
Nat Genet ; 55(6): 995-1008, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37277652

RESUMO

The kidneys operate at the interface of plasma and urine by clearing molecular waste products while retaining valuable solutes. Genetic studies of paired plasma and urine metabolomes may identify underlying processes. We conducted genome-wide studies of 1,916 plasma and urine metabolites and detected 1,299 significant associations. Associations with 40% of implicated metabolites would have been missed by studying plasma alone. We detected urine-specific findings that provide information about metabolite reabsorption in the kidney, such as aquaporin (AQP)-7-mediated glycerol transport, and different metabolomic footprints of kidney-expressed proteins in plasma and urine that are consistent with their localization and function, including the transporters NaDC3 (SLC13A3) and ASBT (SLC10A2). Shared genetic determinants of 7,073 metabolite-disease combinations represent a resource to better understand metabolic diseases and revealed connections of dipeptidase 1 with circulating digestive enzymes and with hypertension. Extending genetic studies of the metabolome beyond plasma yields unique insights into processes at the interface of body compartments.


Assuntos
Rim , Metaboloma , Rim/metabolismo , Metabolômica
3.
Molecules ; 28(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36770817

RESUMO

Transmembrane transport of small organic and inorganic molecules is one of the cornerstones of cellular metabolism. Among transmembrane transporters, solute carrier (SLC) proteins form the largest, albeit very diverse, superfamily with over 400 members. It was recognized early on that xenobiotics can directly interact with SLCs and that this interaction can fundamentally determine their efficacy, including bioavailability and intertissue distribution. Apart from the well-established prodrug strategy, the chemical ligation of transporter substrates to nanoparticles of various chemical compositions has recently been used as a means to enhance their targeting and absorption. In this review, we summarize efforts in drug design exploiting interactions with specific SLC transporters to optimize their therapeutic effects. Furthermore, we describe current and future challenges as well as new directions for the advanced development of therapeutics that target SLC transporters.


Assuntos
Proteínas de Membrana Transportadoras , Pró-Fármacos , Proteínas de Membrana Transportadoras/metabolismo , Transporte Biológico , Proteínas Carreadoras de Solutos/metabolismo , Sistemas de Liberação de Medicamentos
4.
Cell Calcium ; 105: 102616, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35792401

RESUMO

In humans, there are three paralogs of the Orai Ca2+ channel that form the core of the store-operated calcium entry (SOCE) machinery. While the STIM-mediated gating mechanism of Orai channels is still under active investigation, several artificial and natural variants are known to cause constitutive activity of the human Orai1 channel. Surprisingly, little is known about the conservation of the gating checkpoints among the different human Orai paralogs and orthologs in other species. In our work, we show that the mutation corresponding to the activating mutation H134A in transmembrane helix 2 (TM2) of human Orai1 also activates Orai2 and Orai3, likely via a similar mechanism. However, this cross-paralog conservation does not apply to the "ANSGA" nexus mutations in TM4 of human Orai1, which is reported to mimic the STIM1-activated state of the channel. In investigating the mechanistic background of these differences, we identified two positions, H171 and F246 in human Orai1, that are not conserved among paralogs and that seem to be crucial for the channel activation triggered by the "ANSGA" mutations in Orai1. However, mutations of the same residues still allow gating of Orai1 by STIM1, suggesting that the ANSGA mutant of Orai1 may not be a surrogate for the STIM1-activated state of the Orai1 channel. Our results shed new light on these important gating checkpoints and show that the gating mechanism of Orai channels is affected by multiple factors that are not necessarily conserved among orai homologs, such as the TM4-TM3 coupling.


Assuntos
Canais de Cálcio , Cálcio , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Humanos , Mutação/genética , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo
5.
PLoS One ; 17(7): e0271062, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35901096

RESUMO

Solute carrier (SLC) proteins represent the largest superfamily of transmembrane transporters. While many of them play key biological roles, their systematic analysis has been hampered by their functional and structural heterogeneity. Based on available nomenclature systems, we hypothesized that many as yet unidentified SLC transporters exist in the human genome, which await further systematic analysis. Here, we present criteria for defining "SLC-likeness" to curate a set of "SLC-like" protein families from the Transporter Classification Database (TCDB) and Protein families (Pfam) databases. Computational sequence similarity searches surprisingly identified ~120 more proteins in human with potential SLC-like properties compared to previous annotations. Interestingly, several of these have documented transport activity in the scientific literature. To complete the overview of the "SLC-ome", we present an algorithm to classify SLC-like proteins into protein families, investigating their known functions and evolutionary relationships to similar proteins from 6 other clinically relevant experimental organisms, and pinpoint structural orphans. We envision that our work will serve as a stepping stone for future studies of the biological function and the identification of the natural substrates of the many under-explored SLC transporters, as well as for the development of new therapeutic applications, including strategies for personalized medicine and drug delivery.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Humanos , Proteínas de Membrana Transportadoras/genética , Proteoma/metabolismo , Proteínas Carreadoras de Solutos/genética
6.
Front Physiol ; 13: 898508, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35694410

RESUMO

The SLC9 gene family encodes Na+/H+ exchangers (NHEs), a group of membrane transport proteins critically involved in the regulation of cytoplasmic and organellar pH, cell volume, as well as systemic acid-base and volume homeostasis. NHEs of the SLC9A subfamily (NHE 1-9) are well-known for their roles in human physiology and disease. Much less is known about the two members of the SLC9B subfamily, NHA1 and NHA2, which share higher similarity to prokaryotic NHEs than the SLC9A paralogs. NHA2 (also known as SLC9B2) is ubiquitously expressed and has recently been shown to participate in renal blood pressure and electrolyte regulation, insulin secretion and systemic glucose homeostasis. In addition, NHA2 has been proposed to contribute to the pathogenesis of polycystic kidney disease, the most common inherited kidney disease in humans. NHA1 (also known as SLC9B1) is mainly expressed in testis and is important for sperm motility and thus male fertility, but has not been associated with human disease thus far. In this review, we present a summary of the structure, function and regulation of expression of the SLC9B subfamily members, focusing primarily on the better-studied SLC9B paralog, NHA2. Furthermore, we will review the potential of the SLC9B subfamily as drug targets.

7.
Biomolecules ; 10(12)2020 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260588

RESUMO

Mitochondrial carriers facilitate the transfer of small molecules across the inner mitochondrial membrane (IMM) to support mitochondrial function and core cellular processes. In addition to the classical SLC25 (solute carrier family 25) mitochondrial carriers, the past decade has led to the discovery of additional protein families with numerous members that exhibit IMM localization and transporter-like properties. These include mitochondrial pyruvate carriers, sideroflexins, and mitochondrial cation/H+ exchangers. These transport proteins were linked to vital physiological functions and disease. Their structures and transport mechanisms are, however, still largely unknown and understudied. Protein sequence analysis per se can often pinpoint hotspots that are of functional or structural importance. In this review, we summarize current knowledge about the sequence features of mitochondrial transporters with a special focus on the newly included SLC54, SLC55 and SLC56 families of the SLC solute carrier superfamily. Taking a step further, we combine sequence conservation analysis with transmembrane segment and secondary structure prediction methods to extract residue positions and sequence motifs that likely play a role in substrate binding, binding site gating or structural stability. We hope that our review will help guide future experimental efforts by the scientific community to unravel the transport mechanisms and structures of these novel mitochondrial carriers.


Assuntos
Proteínas de Transporte da Membrana Mitocondrial/genética , Análise de Sequência de Proteína , Humanos , Mitocôndrias/química , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Estrutura Secundária de Proteína
8.
Sci Adv ; 6(48)2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33246965

RESUMO

Epithelial calcium channel TRPV6 plays vital roles in calcium homeostasis, and its dysregulation is implicated in multifactorial diseases, including cancers. Here, we study the molecular mechanism of selective nanomolar-affinity TRPV6 inhibition by (4-phenylcyclohexyl)piperazine derivatives (PCHPDs). We use x-ray crystallography and cryo-electron microscopy to solve the inhibitor-bound structures of TRPV6 and identify two types of inhibitor binding sites in the transmembrane region: (i) modulatory sites between the S1-S4 and pore domains normally occupied by lipids and (ii) the main site in the ion channel pore. Our structural data combined with mutagenesis, functional and computational approaches suggest that PCHPDs plug the open pore of TRPV6 and convert the channel into a nonconducting state, mimicking the action of calmodulin, which causes inactivation of TRPV6 channels under physiological conditions. This mechanism of inhibition explains the high selectivity and potency of PCHPDs and opens up unexplored avenues for the design of future-generation biomimetic drugs.


Assuntos
Canais de Cálcio , Canais de Cátion TRPV , Cálcio/metabolismo , Canais de Cálcio/química , Calmodulina/metabolismo , Microscopia Crioeletrônica , Humanos , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/metabolismo
9.
Pflugers Arch ; 472(9): 1177-1206, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32767111

RESUMO

Sodium glucose transporters (SGLTs) belong to the mammalian solute carrier family SLC5. This family includes 12 different members in human that mediate the transport of sugars, vitamins, amino acids, or smaller organic ions such as choline. The SLC5 family belongs to the sodium symporter family (SSS), which encompasses transporters from all kingdoms of life. It furthermore shares similarity to the structural fold of the APC (amino acid-polyamine-organocation) transporter family. Three decades after the first molecular identification of the intestinal Na+-glucose cotransporter SGLT1 by expression cloning, many new discoveries have evolved, from mechanistic analysis to molecular genetics, structural biology, drug discovery, and clinical applications. All of these advances have greatly influenced physiology and medicine. While SGLT1 is essential for fast absorption of glucose and galactose in the intestine, the expression of SGLT2 is largely confined to the early part of the kidney proximal tubules, where it reabsorbs the bulk part of filtered glucose. SGLT2 has been successfully exploited by the pharmaceutical industry to develop effective new drugs for the treatment of diabetic patients. These SGLT2 inhibitors, termed gliflozins, also exhibit favorable nephroprotective effects and likely also cardioprotective effects. In addition, given the recent finding that SGLT2 is also expressed in tumors of pancreas and prostate and in glioblastoma, this opens the door to potential new therapeutic strategies for cancer treatment by specifically targeting SGLT2. Likewise, further discoveries related to the functional association of other SGLTs of the SLC5 family to human pathologies will open the door to potential new therapeutic strategies. We furthermore hope that the herein summarized information about the physiological roles of SGLTs and the therapeutic benefits of the gliflozins will be useful for our readers to better understand the molecular basis of the beneficial effects of these inhibitors, also in the context of the tubuloglomerular feedback (TGF), and the renin-angiotensin system (RAS). The detailed mechanisms underlying the clinical benefits of SGLT2 inhibition by gliflozins still warrant further investigation that may serve as a basis for future drug development.


Assuntos
Diabetes Mellitus/tratamento farmacológico , Proteínas de Transporte de Sódio-Glucose/metabolismo , Animais , Descoberta de Drogas/métodos , Humanos , Absorção Intestinal , Reabsorção Renal , Proteínas de Transporte de Sódio-Glucose/antagonistas & inibidores , Proteínas de Transporte de Sódio-Glucose/química , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico
11.
Ann Neurol ; 85(6): 921-926, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30937933

RESUMO

SLC1A2 is a trimeric transporter essential for clearing glutamate from neuronal synapses. Recurrent de novo SLC1A2 missense variants cause a severe, early onset developmental and epileptic encephalopathy via an unclear mechanism. We demonstrate that all 3 variants implicated in this condition localize to the trimerization domain of SLC1A2, and that the Leu85Pro variant acts via a dominant negative mechanism to reduce, but not eliminate, wild-type SLC1A2 protein localization and function. Finally, we demonstrate that treatment of a 20-month-old SLC1A2-related epilepsy patient with the SLC1A2-modulating agent ceftriaxone did not result in a significant change in daily spasm count. ANN NEUROL 2019;85:921-926.


Assuntos
Epilepsia Generalizada/diagnóstico , Epilepsia Generalizada/genética , Transportador 2 de Aminoácido Excitatório/genética , Variação Genética/genética , Sequência de Aminoácidos , Ceftriaxona/uso terapêutico , Pré-Escolar , Epilepsia Generalizada/tratamento farmacológico , Transportador 2 de Aminoácido Excitatório/química , Feminino , Células HEK293 , Humanos , Lactente , Recém-Nascido , Masculino , Estrutura Secundária de Proteína
12.
J Biol Chem ; 294(20): 8046-8063, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-30914478

RESUMO

The transport and ion-coupling mechanisms of ZIP transporters remain largely uncharacterized. Previous work in our laboratory has revealed that the solute carrier family 39 member A2 (SLC39A2/ZIP2) increases its substrate transport rate in the presence of extracellular H+ Here, we used a combination of in silico and in vitro techniques involving structural modeling, mutagenesis, and functional characterization in HEK293 cells to identify amino acid residues potentially relevant for both the ZIP2-H+ interaction and substrate binding. Our ZIP2 models revealed a cluster of charged residues close to the substrate-translocation pore. Interestingly, the H63A substitution completely abrogated pH sensitivity, and substitutions of Glu-67 and Phe-269 altered the pH and voltage modulation of transport. In contrast, substitution of Glu-106, which might be part of a dimerization interface, altered pH but not voltage modulation. Substitution of Phe-269, located close to the substrate-binding site, also affected substrate selectivity. These findings were supported by an additional model of ZIP2 that was based on the structure of a prokaryotic homolog, Bordetella bronchiseptica ZrT/Irt-like protein (bbZIP), and in silico pKa calculations. We also found that residues Glu-179, His-175, His-202, and Glu-276 are directly involved in the coordination of the substrate metal ion. We noted that, unlike bbZIP, human ZIP2 is predicted to harbor a single divalent metal-binding site, with the charged side chain of Lys-203 replacing the second bound ion. Our results provide the first structural evidence for the previously observed pH and voltage modulation of ZIP2-mediated metal transport, identify the substrate-binding site, and suggest a structure-based transport mechanism for the ZIP2 transporter.


Assuntos
Proteínas de Transporte de Cátions , Zinco , Substituição de Aminoácidos , Sítios de Ligação , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Transporte de Íons , Mutação de Sentido Incorreto , Zinco/química , Zinco/metabolismo
13.
Trends Biochem Sci ; 43(10): 752-789, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30177408

RESUMO

Amino acid transporters (AATs) are membrane-bound transport proteins that mediate transfer of amino acids into and out of cells or cellular organelles. AATs have diverse functional roles ranging from neurotransmission to acid-base balance, intracellular energy metabolism, and anabolic and catabolic reactions. In cancer cells and diabetes, dysregulation of AATs leads to metabolic reprogramming, which changes intracellular amino acid levels, contributing to the pathogenesis of cancer, obesity and diabetes. Indeed, the neutral amino acid transporters (NATs) SLC7A5/LAT1 and SLC1A5/ASCT2 are likely involved in several human malignancies. However, a clinical therapy that directly targets AATs has not yet been developed. The purpose of this review is to highlight the structural and functional diversity of AATs, their diverse physiological roles in different tissues and organs, their wide-ranging implications in human diseases and the emerging strategies and tools that will be necessary to target AATs therapeutically.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Sistemas de Transporte de Aminoácidos/química , Aminoácidos/metabolismo , Doença/classificação , Células Epiteliais/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Rim/metabolismo , Túbulos Renais Proximais/metabolismo , Longevidade , Conformação Proteica , Estresse Fisiológico
14.
Sci Rep ; 7(1): 6194, 2017 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-28754960

RESUMO

In humans, the H+-coupled Fe2+ transporter DMT1 (SLC11A2) is essential for proper maintenance of iron homeostasis. While X-ray diffraction has recently unveiled the structure of the bacterial homologue ScaDMT as a LeuT-fold transporter, the exact mechanism of H+-cotransport has remained elusive. Here, we used a combination of molecular dynamics simulations, in silico pK a calculations and site-directed mutagenesis, followed by rigorous functional analysis, to discover two previously uncharacterized functionally relevant residues in hDMT1 that contribute to H+-coupling. E193 plays a central role in proton binding, thereby affecting transport properties and electrogenicity, while N472 likely coordinates the metal ion, securing an optimally "closed" state of the protein. Our molecular dynamics simulations provide insight into how H+-translocation through E193 is allosterically linked to intracellular gating, establishing a novel transport mechanism distinct from that of other H+-coupled transporters.


Assuntos
Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/metabolismo , Hidrogênio/metabolismo , Mutagênese Sítio-Dirigida , Sítio Alostérico , Sítios de Ligação , Proteínas de Transporte de Cátions/genética , Simulação por Computador , Humanos , Transporte de Íons , Cinética , Modelos Moleculares , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Prótons
15.
Database (Oxford) ; 2017(1)2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28365738

RESUMO

ABC (ATP-Binding Cassette) proteins with altered function are responsible for numerous human diseases. To aid the selection of positions and amino acids for ABC structure/function studies we have generated a database, ABCMdb (Gyimesi et al. , ABCMdb: a database for the comparative analysis of protein mutations in ABC transporters, and a potential framework for a general application. Hum Mutat 2012; 33:1547-1556.), with interactive tools. The database has been populated with mentions of mutations extracted from full text papers, alignments and structural models. In the new version of the database we aimed to collect the effect of mutations from databases including ClinVar. Because of the low number of available data, even in the case of the widely studied disease-causing ABC proteins, we also included the possible effects of mutations based on SNAP2 and PROVEAN predictions. To aid the interpretation of variations in non-coding regions, the database was supplemented with related DNA level information. Our results emphasize the importance of in silico predictions because of the sparse information available on variants and suggest that mutations at analogous positions in homologous ABC proteins have a strong predictive power for the effects of mutations. Our improved ABCMdb advances the design of both experimental studies and meta-analyses in order to understand drug interactions of ABC proteins and the effects of mutations on functional expression. Database URL: http://abcm2.hegelab.org.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Bases de Dados de Proteínas , Mutação , Análise de Sequência de Proteína/métodos , Transportadores de Cassetes de Ligação de ATP/química , Animais , Humanos , Relação Estrutura-Atividade
16.
J Chem Theory Comput ; 13(1): 29-41, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-27958758

RESUMO

We present a novel, conceptually simple approach to calculate the configurational entropy difference between two conformational ensembles of a molecular system. The method estimates the full-dimensional probability density function of the system by a Gaussian mixture, using an efficient greedy learning algorithm with a cross-validation-based stopping criterion. An evaluation of the method on conformational ensembles corresponding to substates of five small peptide systems shows that excellent agreement is found with the exact entropy differences obtained from a full enumeration of conformations. Compared with the quasiharmonic method and two other, more recently developed methods, the Gaussian mixture method yields more accurate results at smaller sample sizes. We illustrate the power of the method by calculating the backbone torsion angle entropy difference between disulfide-bonded and nondisulfide-bonded states of tachyplesin, a 17-residue antimicrobial peptide, and between two substates in the native ensemble of the 58-residue bovine pancreatic trypsin inhibitor.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Proteínas de Ligação a DNA/química , Entropia , Simulação de Dinâmica Molecular , Peptídeos Cíclicos/química , Conformação Proteica
17.
PLoS One ; 11(1): e0146066, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26727491

RESUMO

Understanding of multidrug binding at the atomic level would facilitate drug design and strategies to modulate drug metabolism, including drug transport, oxidation, and conjugation. Therefore we explored the mechanism of promiscuous binding of small molecules by studying the ligand binding domain, the PAS-B domain of the aryl hydrocarbon receptor (AhR). Because of the low sequence identities of PAS domains to be used for homology modeling, structural features of the widely employed HIF-2α and a more recent suitable template, CLOCK were compared. These structures were used to build AhR PAS-B homology models. We performed molecular dynamics simulations to characterize dynamic properties of the PAS-B domain and the generated conformational ensembles were employed in in silico docking. In order to understand structural and ligand binding features we compared the stability and dynamics of the promiscuous AhR PAS-B to other PAS domains exhibiting specific interactions or no ligand binding function. Our exhaustive in silico binding studies, in which we dock a wide spectrum of ligand molecules to the conformational ensembles, suggest that ligand specificity and selection may be determined not only by the PAS-B domain itself, but also by other parts of AhR and its protein interacting partners. We propose that ligand binding pocket and access channels leading to the pocket play equally important roles in discrimination of endogenous molecules and xenobiotics.


Assuntos
Receptores de Hidrocarboneto Arílico/química , Xenobióticos/metabolismo , Fatores de Transcrição ARNTL/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Sítios de Ligação , Proteínas CLOCK/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Modelos Químicos , Modelos Moleculares , Simulação de Acoplamento Molecular , Complexos Multiproteicos , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Receptores de Hidrocarboneto Arílico/metabolismo , Especificidade por Substrato
18.
J Biol Chem ; 290(51): 30464-74, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26483543

RESUMO

Glutamate transporters maintain synaptic concentration of the excitatory neurotransmitter below neurotoxic levels. Their transport cycle consists of cotransport of glutamate with three sodium ions and one proton, followed by countertransport of potassium. Structural studies proposed that a highly conserved serine located in the binding pocket of the homologous GltPh coordinates L-aspartate as well as the sodium ion Na1. To experimentally validate these findings, we generated and characterized several mutants of the corresponding serine residue, Ser-364, of human glutamate transporter SLC1A2 (solute carrier family 1 member 2), also known as glutamate transporter GLT-1 and excitatory amino acid transporter EAAT2. S364T, S364A, S364C, S364N, and S364D were expressed in HEK cells and Xenopus laevis oocytes to measure radioactive substrate transport and transport currents, respectively. All mutants exhibited similar plasma membrane expression when compared with WT SLC1A2, but substitutions of serine by aspartate or asparagine completely abolished substrate transport. On the other hand, the threonine mutant, which is a more conservative mutation, exhibited similar substrate selectivity, substrate and sodium affinities as WT but a lower selectivity for Na(+) over Li(+). S364A and S364C exhibited drastically reduced affinities for each substrate and enhanced selectivity for L-aspartate over D-aspartate and L-glutamate, and lost their selectivity for Na(+) over Li(+). Furthermore, we extended the analysis of our experimental observations using molecular dynamics simulations. Altogether, our findings confirm a pivotal role of the serine 364, and more precisely its hydroxyl group, in coupling sodium and substrate fluxes.


Assuntos
Membrana Celular/metabolismo , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Lítio/metabolismo , Sódio/metabolismo , Substituição de Aminoácidos , Animais , Membrana Celular/genética , Transportador 2 de Aminoácido Excitatório , Proteínas de Transporte de Glutamato da Membrana Plasmática/genética , Células HEK293 , Humanos , Transporte de Íons/fisiologia , Mutação de Sentido Incorreto , Oócitos , Serina/genética , Serina/metabolismo , Xenopus laevis
19.
Angew Chem Int Ed Engl ; 54(49): 14748-52, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26457814

RESUMO

Herein, we report the discovery of the first potent and selective inhibitor of TRPV6, a calcium channel overexpressed in breast and prostate cancer, and its use to test the effect of blocking TRPV6-mediated Ca(2+)-influx on cell growth. The inhibitor was discovered through a computational method, xLOS, a 3D-shape and pharmacophore similarity algorithm, a type of ligand-based virtual screening (LBVS) method described briefly here. Starting with a single weakly active seed molecule, two successive rounds of LBVS followed by optimization by chemical synthesis led to a selective molecule with 0.3 µM inhibition of TRPV6. The ability of xLOS to identify different scaffolds early in LBVS was essential to success. The xLOS method may be generally useful to develop tool compounds for poorly characterized targets.


Assuntos
Antineoplásicos/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Canais de Cátion TRPV/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Bloqueadores dos Canais de Cálcio/síntese química , Bloqueadores dos Canais de Cálcio/química , Canais de Cálcio/biossíntese , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Ligantes , Estrutura Molecular , Relação Estrutura-Atividade , Canais de Cátion TRPV/biossíntese
20.
Cell ; 162(3): 478-87, 2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-26232220

RESUMO

Solute carrier (SLC) membrane transport proteins control essential physiological functions, including nutrient uptake, ion transport, and waste removal. SLCs interact with several important drugs, and a quarter of the more than 400 SLC genes are associated with human diseases. Yet, compared to other gene families of similar stature, SLCs are relatively understudied. The time is right for a systematic attack on SLC structure, specificity, and function, taking into account kinship and expression, as well as the dependencies that arise from the common metabolic space.


Assuntos
Proteínas de Membrana Transportadoras/metabolismo , Animais , Pesquisa Biomédica , Descoberta de Drogas , Expressão Gênica , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...